The call for patient-focused drug development is loud and clear, as expressed in the 21st Century Cures Act and in recent guidelines and initiatives of regulatory agencies. Among the factors contributing to modernized drug development and improved health-care activities are easily interpretable measures of clinical benefit. In addition, special care is needed for cancer trials with time-to-event endpoints if the treatment effect is not constant over time. We propose the predictive individual effect which is a patient-centric and tangible measure of clinical benefit under a wide variety of scenarios. It can be obtained by standard predictive calculations under a rank preservation assumption that has been used previously in trials with treatment switching. We discuss four recent Oncology trials that cover situations with proportional as well as non-proportional hazards (delayed treatment effect or crossing of survival curves). It is shown that the predictive individual effect offers valuable insights beyond p-values, estimates of hazard ratios or differences in median survival. Compared to standard statistical measures, the predictive individual effect is a direct, easily interpretable measure of clinical benefit. It facilitates communication among clinicians, patients, and other parties and should therefore be considered in addition to standard statistical results.


翻译:21世纪《库尔斯法案》和监管机构最近的指导方针和倡议都强烈和明确地呼吁发展以病人为中心的药物; 促使药物发展现代化和改进保健活动的因素中,有易于解释的临床效益措施; 此外,如果治疗效果在一段时间内不保持不变,则需要为具有时间到活动终点的癌症试验提供特别护理; 我们提出预测性个人效应,这是在多种情况下以病人为中心的临床效益的有形计量标准; 通过标准预测性计算,可以在先前在治疗转换试验中使用的维持等级假设下获得; 我们讨论最近四项肿瘤学试验,这些试验涵盖比例和非比例性危险的情况(延迟治疗效应或超越生存曲线); 显示预测性个人效应提供了宝贵的洞见,超出了P价值、危险比率估计数或中位生存差异; 与标准的统计计量相比,预测性个人效应是一种直接、易于解释的临床效益计量; 便利临床医生、病人和其他方面的沟通,因此,除了标准统计结果外,还应考虑这种预测性个人效应。

0
下载
关闭预览

相关内容

如何撰写一篇好的科研论文?这份22页ppt为你指点一二
专知会员服务
63+阅读 · 2021年7月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年2月20日
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月17日
VIP会员
相关VIP内容
如何撰写一篇好的科研论文?这份22页ppt为你指点一二
专知会员服务
63+阅读 · 2021年7月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员