We find Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline. In this report, we show universal image segmentation architectures trivially generalize to video segmentation by directly predicting 3D segmentation volumes. Specifically, Mask2Former sets a new state-of-the-art of 60.4 AP on YouTubeVIS-2019 and 52.6 AP on YouTubeVIS-2021. We believe Mask2Former is also capable of handling video semantic and panoptic segmentation, given its versatility in image segmentation. We hope this will make state-of-the-art video segmentation research more accessible and bring more attention to designing universal image and video segmentation architectures.
翻译:我们发现 Mask2Former 在视频实例分解方面也取得了最新水平的表演,而没有改变结构、损失甚至培训管道。 在本报告中,我们通过直接预测 3D 分解卷,展示了通用图像分解结构与视频分解结构的微小一般化。 具体地说, Mask2Former在YouTubeVIS-2019和YouTubeVIS-2021上设置了60.4 AP的新型艺术。 我们认为 Mask2Former也有能力处理视频语义和全景分解,因为它在图像分解中具有多功能性。 我们希望这将让最先进的视频分解研究更容易被利用,并吸引更多关注设计通用图像和视频分解结构。