When analysing multiple time series that may be subject to changepoints, it is sometimes possible to specify a priori, by means of a graph, which pairs of time series are likely to be impacted by simultaneous changepoints. This article proposes an informative prior for changepoints which encodes the information contained in the graph, inducing a changepoint model for multiple time series that borrows strength across clusters of connected time series to detect weak signals for synchronous changepoints. The graphical model for changepoints is further extended to allow dependence between nearby but not necessarily synchronous changepoints across neighbouring time series in the graph. A novel reversible jump Markov chain Monte Carlo (MCMC) algorithm making use of auxiliary variables is proposed to sample from the graphical changepoint model. The merit of the proposed approach is demonstrated through a changepoint analysis of computer network authentication logs from Los Alamos National Laboratory (LANL), demonstrating an improvement at detecting weak signals for network intrusions across users linked by network connectivity, whilst limiting the number of false alerts.


翻译:在分析可能受更改点影响的多个时间序列时,有时有可能通过图表来指定一个先验性的时间序列,这些时间序列可能会受到同步更改点的影响。本篇文章提议在修改点之前先提供一个信息化的修改点,该修改点编码了图中所含的信息,从而产生一个多时间序列的修改点模型,在连接的时间序列组中借出强度,以探测同步变化点的微弱信号。变化点的图形模型进一步扩展,允许附近但不一定同步改变点之间在图形中相邻的时间序列中的依赖性。一个新的可逆性跳跃Markov链 Monte Carlo(MC)算法,使用辅助变量,建议从图形改变点模型中抽取样本。通过对Los Alamos国家实验室计算机网络验证日志进行变更点分析,表明拟议方法的优点,表明在发现网络连接到的用户网络入侵的薄弱信号方面有所改进,同时限制虚假警报的数量。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员