Product-specific guidances (PSGs) recommended by the United States Food and Drug Administration (FDA) are instrumental to promote and guide generic drug product development. To assess a PSG, the FDA assessor needs to take extensive time and effort to manually retrieve supportive drug information of absorption, distribution, metabolism, and excretion (ADME) from the reference listed drug labeling. In this work, we leveraged the state-of-the-art pre-trained language models to automatically label the ADME paragraphs in the pharmacokinetics section from the FDA-approved drug labeling to facilitate PSG assessment. We applied a transfer learning approach by fine-tuning the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model to develop a novel application of ADME semantic labeling, which can automatically retrieve ADME paragraphs from drug labeling instead of manual work. We demonstrated that fine-tuning the pre-trained BERT model can outperform the conventional machine learning techniques, achieving up to 11.6% absolute F1 improvement. To our knowledge, we were the first to successfully apply BERT to solve the ADME semantic labeling task. We further assessed the relative contribution of pre-training and fine-tuning to the overall performance of the BERT model in the ADME semantic labeling task using a series of analysis methods such as attention similarity and layer-based ablations. Our analysis revealed that the information learned via fine-tuning is focused on task-specific knowledge in the top layers of the BERT, whereas the benefit from the pre-trained BERT model is from the bottom layers.


翻译:美国食品和药品管理局(FDA)建议的针对产品的指导(PSG)有助于推动和指导通用药物产品开发。为了评估PSG,林业发展局评估员需要花大量时间和精力从参考所列药物标签中手动检索关于吸收、分配、新陈代谢和排泄(ADME)的辅助药物信息。在这项工作中,我们利用了美国食品和药品管理局(FDA)建议的先进的预先培训语言模型,自动将ADME段落贴在药理学部分,以便利PSG评估。我们应用了一种转移学习方法,从变异器(BERT)预培训的双向电解码演示模型中微调了预先培训过的双向电解码演示,开发了ADME语义标签的新应用,这可以自动从药物标签而不是手动工作中检索ADME段落。我们证明,经过培训的BERT模型比常规机器学习技术要优,达到11.6%的绝对F1改进。我们的知识是,我们首先成功地应用了BERER公司在升级前的层次分析中精细调整了AME高级分析,这是我们通过BEM标签任务分析的升级的升级的升级的比级分析。我们对ADLADLADLLAD的升级的升级的升级的升级的升级的升级的升级分析,这是我们的一项分析。我们的一项分析。我们通过BSR的升级的升级的升级的升级的升级的升级的升级的比级的升级的升级的升级的升级的升级任务。我们的一项分析。我们的一项分析是用来在BSR任务。我们的一项分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员