Models of acoustic word embeddings (AWEs) learn to map variable-length spoken word segments onto fixed-dimensionality vector representations such that different acoustic exemplars of the same word are projected nearby in the embedding space. In addition to their speech technology applications, AWE models have been shown to predict human performance on a variety of auditory lexical processing tasks. Current AWE models are based on neural networks and trained in a bottom-up approach that integrates acoustic cues to build up a word representation given an acoustic or symbolic supervision signal. Therefore, these models do not leverage or capture high-level lexical knowledge during the learning process. In this paper, we propose a multi-task learning model that incorporates top-down lexical knowledge into the training procedure of AWEs. Our model learns a mapping between the acoustic input and a lexical representation that encodes high-level information such as word semantics in addition to bottom-up form-based supervision. We experiment with three languages and demonstrate that incorporating lexical knowledge improves the embedding space discriminability and encourages the model to better separate lexical categories.


翻译:声词嵌入模型(AWES)学会在固定维度矢量表示中绘制可变长的口头文字部分图,从而在嵌入空间附近预测同一词的不同声学模拟器。除了其语音技术应用外,AWES模型还展示了在各种听觉词汇处理任务中预测人类性能的模型。当前的AWES模型以神经网络为基础,并经过自下而上的方法培训,该模型结合声音信号,以建立一个字表达式,并给出声音或象征性监督信号。因此,这些模型在学习过程中没有利用或捕捉到高层次的词汇知识。在本文中,我们提出了一个多任务学习模型,将自上而下的词汇知识纳入AWES的培训程序。我们的模式学习了声学投入和词汇表达法之间的图谱,该模型在以自下而上的形式监督之外,将词词词语学等高级信息编码。我们实验了三种语言,并证明纳入词汇知识可以改进空间扰动性,并鼓励模型更好地区分不同词汇类别。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2021年6月10日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员