Learning guarantees often rely on assumptions of i.i.d. data, which will likely be violated in practice once predictors are deployed to perform real-world tasks. Domain adaptation approaches thus appeared as a useful framework yielding extra flexibility in that distinct train and test data distributions are supported, provided that other assumptions are satisfied such as covariate shift, which expects the conditional distributions over labels to be independent of the underlying data distribution. Several approaches were introduced in order to induce generalization across varying train and test data sources, and those often rely on the general idea of domain-invariance, in such a way that the data-generating distributions are to be disregarded by the prediction model. In this contribution, we tackle the problem of generalizing across data sources by approaching it from the opposite direction: we consider a conditional modeling approach in which predictions, in addition to being dependent on the input data, use information relative to the underlying data-generating distribution. For instance, the model has an explicit mechanism to adapt to changing environments and/or new data sources. We argue that such an approach is more generally applicable than current domain adaptation methods since it does not require extra assumptions such as covariate shift and further yields simpler training algorithms that avoid a common source of training instabilities caused by minimax formulations, often employed in domain-invariant methods.


翻译:学习保障往往依赖于i.d.d.数据的假设,一旦部署预测者执行真实世界的任务,这种假设在实践中就可能违反,因此,域适应办法似乎是一个有用的框架,在不同的火车和测试数据分布得到支持的情况下,产生额外的灵活性,只要其他假设得到满足,例如共变式转换,预期标签的有条件分布独立于基本数据分布,这种转换预计与基本数据分布无关。采用几种办法是为了在不同不同的火车和测试数据来源中引起普遍化,而那些来源则往往依赖域变化的一般概念,从而使得数据生成分布被预测模型忽略。在这一贡献中,我们处理数据来源普遍化的问题,从相反的方向接近它:我们考虑一种有条件的模型方法,即预测除了依赖输入数据,还使用与基本数据分布有关的信息。例如,该模型有一个明确的机制,以适应不断变化的环境和/或新的数据来源。我们认为,这种方法比当前域适应方法更为普遍适用,因为目前的域域适应方法不会被目前的域域分配方式忽略。在这种方式上,我们处理整个数据来源普遍化的问题,办法是从相反的方向接近数据来源:我们考虑采用一种有条件的模型,因此不需要在共同培训中采用更简单的域内进行更简单的假设,从而避免采用一种更简单的方法,从而使共同的域一级培训,从而通过采用更稳定的方法,从而避免采用更精确地使共同的研变。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
1+阅读 · 2021年8月30日
Arxiv
1+阅读 · 2021年8月29日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2018年10月23日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员