The development of deep learning techniques has allowed Neural Machine Translation (NMT) models to become extremely powerful, given sufficient training data and training time. However, systems struggle when translating text from a new domain with a distinct style or vocabulary. Tuning on a representative training corpus allows good in-domain translation, but such data-centric approaches can cause over-fitting to new data and `catastrophic forgetting' of previously learned behaviour. We concentrate on more robust approaches to domain adaptation for NMT, particularly the case where a system may need to translate sentences from multiple domains. We divide techniques into those relating to data selection, model architecture, parameter adaptation procedure, and inference procedure. We finally highlight the benefits of domain adaptation and multi-domain adaptation techniques to other lines of NMT research.
翻译:深层学习技术的开发使神经机器翻译模型变得非常强大,因为培训数据和培训时间足够,然而,系统在翻译文本时从一个有不同风格或词汇的新领域进行挣扎,对具有代表性的训练材料进行测试,可以进行良好的内部翻译,但这种以数据为中心的方法可能会造成对新数据的过度适应和对以前学到的行为的“灾难性遗忘”的过度适应。我们集中力量采取更强有力的方法来为神经机器翻译(NMT)领域进行适应,特别是一个系统可能需要翻译多个领域句子的情况。我们把技术分为数据选择、模型结构、参数调整程序和推论程序。我们最后强调领域适应和多领域适应技术对NMT其他研究线的好处。