Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain B is trained. Then, given the new sample x, we create a variational autoencoder for domain A by adapting the layers that are close to the image in order to directly fit x, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample x, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain A. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslation
翻译:根据A域的单一图像 x 和B域的一组图像,我们的任务是生成B域的类似x。 我们争辩说,这项任务可以是一项关键的AI能力,强调认知代理人在世界上采取行动的能力,并提出经验证据,证明现有的未经监督的域翻译方法无法完成这项任务。 我们的方法遵循一个两步过程。 首先,对域B的变式自动编码器进行了培训。 然后,根据新的样本x,我们为域A创建了一个变式自动编码器,调整接近图像的层,以便直接适应x,而只是间接地适应其他层。 我们的实验表明,当接受一个样本x的培训时,新方法也是一样的,作为现有的域传输方法,当这些样本享有来自域A的多种培训样本时。 我们的代码在https://github.com/sagiebenaim/OneShottralation上公布。