Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data. Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks. System and statistical heterogeneity (e.g., highly imbalanced and non-i.i.d. data) further harm model training. To this end, we introduce a method, called FedProto, which computes client deviations using margins of prototypical representations learned on distributed data, and applies them to drive federated optimization via an attention mechanism. In addition, we propose three methods to analyse statistical properties of feature representations learned in FL, in order to elucidate the relationship between accuracy, margins and feature discrepancy of FL models. In experimental analyses, FedProto demonstrates state-of-the-art accuracy and convergence rate across image classification and semantic segmentation benchmarks by enabling maximum margin training of FL models. Moreover, FedProto reduces uncertainty of predictions of FL models compared to the baseline. To our knowledge, this is the first work evaluating FL models in dense prediction tasks, such as semantic segmentation.
翻译:联邦学习(FL)是一个框架,它使分布式示范培训能够使用大量分散化的培训数据进行分散式培训; 现有方法汇总模型,忽视了对愿景任务培训模型至关重要的内部表现; 系统和统计差异性(例如高度不平衡和非i.id.d.数据)进一步伤害模式培训; 为此,我们采用了一种称为FedProto的方法,它利用在分布式数据上学到的模型代表的边距计算客户的偏差,并应用它来驱动通过关注机制进行的凝聚优化; 此外,我们提出了三种方法,用以分析在FL中学习的特征表现的统计特性,以阐明FL模型的准确性、边距和特征差异之间的关系; 在实验性分析中,FedProto展示了图像分类和语义分化基准的最新精确率和趋同率,为FL模型的最大边距培训提供了便利。 此外,FedProto还降低了与基线相比FL模型预测的不确定性。 据我们所知,这是在密集性预测任务中评估FL模型的首项工作,如语义分段。