In this study, we propose a mixture logistic regression model with a Markov structure, and consider the estimation of model parameters using maximum likelihood estimation. We also provide a forward type variable selection algorithm to choose the important explanatory variables to reduce the number of parameters in the proposed model.
翻译:在本研究中,我们提出了一个配有Markov结构的混合物物流回归模型,并考虑使用最大可能性估算模型参数。 我们还提供了一种远期变量选择算法,以选择重要的解释变量,减少拟议模型参数的数量。