We present novel bounds for coreset construction, feature selection, and dimensionality reduction for logistic regression. All three approaches can be thought of as sketching the logistic regression inputs. On the coreset construction front, we resolve open problems from prior work and present novel bounds for the complexity of coreset construction methods. On the feature selection and dimensionality reduction front, we initiate the study of forward error bounds for logistic regression. Our bounds are tight up to constant factors and our forward error bounds can be extended to Generalized Linear Models.
翻译:我们提出了逻辑回归的核心集构造、特征选择和降维的新界限,这三种方法可以被认为是逻辑回归输入的草图。在核心集构造方面,我们解决了先前工作中的开放性问题,并提出了核心集构造方法的复杂度的新界限。在特征选择和降维方面,我们开展了关于逻辑回归前向误差界限的研究。我们的界限紧密到常数因子,我们的逻辑回归前向误差界限可以扩展到广义线性模型。