Attaining prototypical features to represent class distributions is well established in representation learning. However, learning prototypes online from streams of data proves a challenging endeavor as they rapidly become outdated, caused by an ever-changing parameter space in the learning process. Additionally, continual learning does not assume the data stream to be stationary, typically resulting in catastrophic forgetting of previous knowledge. As a first, we introduce a system addressing both problems, where prototypes evolve continually in a shared latent space, enabling learning and prediction at any point in time. In contrast to the major body of work in continual learning, data streams are processed in an online fashion, without additional task-information, and an efficient memory scheme provides robustness to imbalanced data streams. Besides nearest neighbor based prediction, learning is facilitated by a novel objective function, encouraging cluster density about the class prototype and increased inter-class variance. Furthermore, the latent space quality is elevated by pseudo-prototypes in each batch, constituted by replay of exemplars from memory. We generalize the existing paradigms in continual learning to incorporate data incremental learning from data streams by formalizing a two-agent learner-evaluator framework, and obtain state-of-the-art performance by a significant margin on eight benchmarks, including three highly imbalanced data streams.


翻译:在代表制学习中,已经很好地建立了能够代表阶级分布的典型特征。然而,从数据流中在线学习原型证明了一项挑战性的工作,因为数据流迅速过时,其原因是学习过程中的参数空间不断变化。此外,持续学习并不假定数据流是静止的,通常会导致灾难性地忘记先前的知识。首先,我们引入一个处理这两个问题的系统,即原型在共享的潜在空间中不断演化,从而能够随时进行学习和预测。与不断学习的主要工作相比,数据流以在线方式处理,没有额外的任务信息,高效的记忆计划为不平衡的数据流提供了稳健性。除了最近的以邻居为基础的预测之外,新的客观功能也促进了学习,鼓励类原型的集群密度和增加的阶级间差异。此外,每批中的潜在空间质量都因假的模型类型而提高,这是记忆中外层的重现。我们概括了在不断学习中采用的现有模式,通过将数据流的数据递增学习纳入数据流,方法是正式确定两个试导式的八级校程基准,包括高度的差差差框架,并获得状态。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
17+阅读 · 2021年2月15日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
4+阅读 · 2019年11月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员