Continual learning usually assumes the incoming data are fully labeled, which might not be applicable in real applications. In this work, we consider semi-supervised continual learning (SSCL) that incrementally learns from partially labeled data. Observing that existing continual learning methods lack the ability to continually exploit the unlabeled data, we propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN), which continually passes the learned data distribution to the classifier. In particular, ORDisCo replays data sampled from the conditional generator to the classifier in an online manner, exploiting unlabeled data in a time- and storage-efficient way. Further, to explicitly overcome the catastrophic forgetting of unlabeled data, we selectively stabilize parameters of the discriminator that are important for discriminating the pairs of old unlabeled data and their pseudo-labels predicted by the classifier. We extensively evaluate ORDisCo on various semi-supervised learning benchmark datasets for SSCL, and show that ORDisCo achieves significant performance improvement on SVHN, CIFAR10 and Tiny-ImageNet, compared to strong baselines.
翻译:持续学习通常假定进取的数据完全贴上标签,这可能不适用于实际应用。在这项工作中,我们考虑半监督的连续学习(SSCL),从部分标签数据中逐步学习。观察现有的连续学习方法缺乏持续利用未贴标签数据的能力,我们提议与差异性兼容性(ORDisco)一起进行深度在线重玩,以相互依存的方式学习一个带有有条件的基因化对抗网络(GAN)的分类器,该分类器不断将所学数据传播到分类器。特别是,ORDisco以在线方式从有条件的生成器向分类器取样数据,以具有时间和储存效率的方式利用未贴标签数据。此外,为了明确克服无标签数据的灾难性遗忘,我们选择了歧视旧的未贴标签数据及其由分类器预测的假标签的导师参数。我们广泛评价了ORDisco,以各种半超超标准的方法为SSCL提供基准数据集,并显示ORDisco在SCLVN10基准和SVNFAR等基线上取得了显著的改进。