Hand pose estimation (HPE) is a task that predicts and describes the hand poses from images or video frames. When HPE models estimate hand poses captured in a laboratory or under controlled environments, they normally deliver good performance. However, the real-world environment is complex, and various uncertainties may happen, which could degrade the performance of HPE models. For example, the hands could be occluded, the visibility of hands could be reduced by imperfect exposure rate, and the contour of hands prone to be blurred during fast hand movements. In this work, we adopt metamorphic testing to evaluate the robustness of HPE models and provide suggestions on the choice of HPE models for different applications. The robustness evaluation was conducted on four state-of-the-art models, namely MediaPipe hands, OpenPose, BodyHands, and NSRM hand. We found that on average more than 80\% of the hands could not be identified by BodyHands, and at least 50\% of hands could not be identified by MediaPipe hands when diagonal motion blur is introduced, while an average of more than 50\% of strongly underexposed hands could not be correctly estimated by NSRM hand. Similarly, applying occlusions on only four hand joints will also largely degrade the performance of these models. The experimental results show that occlusions, illumination variations, and motion blur are the main obstacles to the performance of existing HPE models. These findings may pave the way for researchers to improve the performance and robustness of hand pose estimation models and their applications.


翻译:手摆图示( HHPE) 是一项预测和描述图像或视频框架的手摆布的任务。 当 HPE 模型估计手摆在实验室或受控环境中捕获时, 通常会提供良好的性能。 然而, 真实世界环境复杂, 可能会发生各种不确定性, 这会降低 HPE 模型的性能。 例如, 手可能被遮蔽, 手的能见度可能因接触率不完善而降低, 手的轮廓在快速手动时会变得模糊。 在这项工作中, 我们采用变形测试来评价 HPE 模型的稳健健性能, 并就 HPE 模型的不同应用提供建议。 稳健性评价是在四种最先进的模型上进行的, 即MediaPipe 手、 OpenPose、 BodyHands 和NSRM 手 。 我们发现, 手势的能见度平均超过 80 %, 而手伸缩率至少50 无法被MediaPipe 手 显示。 当引入三角运动时, 的模型中, 也只能正确显示这些主要的性能压模型。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员