Locating diseases in chest X-ray images with few careful annotations saves large human effort. Recent works approached this task with innovative weakly-supervised algorithms such as multi-instance learning (MIL) and class activation maps (CAM), however, these methods often yield inaccurate or incomplete regions. One of the reasons is the neglection of the pathological implications hidden in the relationship across anatomical regions within each image and the relationship across images. In this paper, we argue that the cross-region and cross-image relationship, as contextual and compensating information, is vital to obtain more consistent and integral regions. To model the relationship, we propose the Graph Regularized Embedding Network (GREN), which leverages the intra-image and inter-image information to locate diseases on chest X-ray images. GREN uses a pre-trained U-Net to segment the lung lobes, and then models the intra-image relationship between the lung lobes using an intra-image graph to compare different regions. Meanwhile, the relationship between in-batch images is modeled by an inter-image graph to compare multiple images. This process mimics the training and decision-making process of a radiologist: comparing multiple regions and images for diagnosis. In order for the deep embedding layers of the neural network to retain structural information (important in the localization task), we use the Hash coding and Hamming distance to compute the graphs, which are used as regularizers to facilitate training. By means of this, our approach achieves the state-of-the-art result on NIH chest X-ray dataset for weakly-supervised disease localization. Our codes are accessible online.


翻译:在胸前X射线图像中发现疾病而没有仔细的描述,从而节省了人类的巨大努力。最近的工作在这项工作中,采用了创新的、监督不力的算法,例如多功能学习(MIL)和课堂激活地图(CAM),但这些方法往往产生不准确或不完整的区域。其中一个原因是忽略了每个图像内各解剖区域的关系中隐藏的病理影响,以及图像之间的关系。在本文中,我们争辩说,跨区域和跨图像关系,作为背景和补偿性信息,对于获得更加一致和一体化的区域至关重要。为了模拟这种关系,我们建议Grag 固定化的嵌入网络(GREN),利用图像内部图像和图像间图来定位X。GREN使用预先训练的U-Net来分析肺部,然后用内部图像图来模拟肺部叶部之间的内部图像关系,用内部可理解的图表来比较不同区域。同时,匹配的图像间结果关系是用一个内部结构化的模型来模拟的,用内部结构图来模拟我们内部结构结构图,这是用来比较我们内部结构结构结构结构结构结构结构图的模型的模型,这是用来比较我们内部结构结构结构结构结构结构结构图的模型的模型中的系统,用来用来比较。这个结构结构中的系统,用来用来用来用来比较我们内部结构结构结构结构图中的系统内部的模型中的系统,用来用来用来用来比较。这个系统,用来用来用来用来比较我们的系统,用来用来用来用来比较。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员