Pseudo Labeling is a technique used to improve the performance of semi-supervised Graph Neural Networks (GNNs) by generating additional pseudo-labels based on confident predictions. However, the quality of generated pseudo-labels has long been a concern due to the sensitivity of the classification objective to given labels. To avoid the untrustworthy classification supervision indicating ``a node belongs to a specific class,'' we favor the fault-tolerant contrasting supervision demonstrating ``two nodes do not belong to the same class.'' Thus, the problem of generating high-quality pseudo-labels is then transformed into a relaxed version, i.e., finding reliable contrasting pairs. To achieve this, we propose a general framework for GNNs, termed Pseudo Contrastive Learning (PCL). It separates two nodes whose positive and negative pseudo-labels target the same class. To incorporate topological knowledge into learning, we devise a topologically weighted contrastive loss that spends more effort separating negative pairs with smaller topological distances. Additionally, to alleviate the heavy reliance on data augmentation, we augment nodes only by applying dropout to the encoded representations. Theoretically, we prove that PCL with the lightweight augmentation works like a representation regularizer to effectively learn separation between negative pairs. Experimentally, we employ PCL on various models, which consistently outperform their counterparts using other popular general techniques on five real-world graphs.


翻译:Pseudo Labeling 是用来改进半监督的图形神经网络(GNNS)性能的一种技术,通过在自信的预测基础上产生额外的假标签。 然而,生成的假标签的质量长期以来一直是一个令人关切的问题,因为分类目标对给定标签敏感。为了避免不可信的分类监督显示“一个节点”属于某个特定类别,'我们赞成“两个节点不属于同一类别”的反差对比监督。'因此,产生高质量假标签的问题随后转变为一个宽松版本,即找到可靠的对比配对。为了实现这一点,我们提议了一个GNNS(称为Pseeudo Contrastial Connessational (PCL))的总框架。它区分两个节点,其中显示“一个节点是“一个节点”属于某个特定类别,'我们赞成将表层知识纳入学习,我们设计了一个上层加权的对比损失,这种模式花费更多的精力将负对子与更小的距离区分开来。此外,为了减轻对五种技术的依赖,即找到可靠的对比配对配对配。为了有效地减轻对数据进行真正的分,我们不断的分化的分化的分化,我们用正常的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级制,我们加的分级的分级的分级的分级的分级的分级,我们要制,我们要制的分级的分级,我们要。我们要的分级的分级,我们要的分级的分级的分级的分级的分级制的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级,我们要的分级的分级的分级的分级的分级,我们的分级的分级的分级的分级的分级的分级的分级,我们的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月11日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员