项目名称: 介孔金属氮化物在燃料电池中的应用

项目编号: No.21471147

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 杨明辉

作者单位: 中国科学院宁波材料技术与工程研究所

项目金额: 80万元

中文摘要: 催化剂载体是燃料电池的重要组成部分,主要起到固定催化剂和辅助催化剂保持大的活性表面积,更重要是防止催化剂在反应过程中发生聚合等作用。燃料电池中主要使用碳黑作为催化剂载体材料。然而在实际操作条件下碳黑易被腐蚀或氧化而导致催化剂失效。这是长期以来阻碍燃料电池得以普遍应用的核心问题之一。过渡金属氮化物(TMN)显示出高的耐腐蚀性,并具有高的导电性。申请人于2011年发现大比表面积纳米级介孔氮化物材料的合成方法。该方法已经获得美国专利。用此方法,申请人已对介孔二元氮化物(TMN)(TM = Cr,Ti,V,Nb,Ta,W and Mo)做了详细研究。研究发现在使用Pt或Pd作为催化剂的情况下,TiN或VN作为载体具有较好的辅助催化作用。介孔氮化物CrN和NbN具有较高的化学和电化学稳定性,但是对催化剂没有促进作用。申请人将继续探索同时具有高催化性能和良好的电化学稳定性的介孔三元氮化物材料。

中文关键词: 无机纳米材料;晶体结构;多孔材料;材料化学;无机合成

英文摘要: The role of catalyst supports for fuel cell and other electronic devices is to provide large active surface area, to anchor catalyst nanoparticles and to prevent aggregation of the catalysts. The corrosion of carbon black as a catalyst support in fuel cell is a core issue for Pt based catalysts. It is easily oxidized at low potential. This corrosion is accelerated with Pt nanoparticles. Transition metal nitride (TMN) shows high corrosion resistance, and has higher conductivity than oxide. Previously, I discovered a novel way to synthesis mesoporous TMN (TM = Cr, Ti, V, Nb, Ta, W and Mo) at relatively high temperature by solid-solid phase separation, which may suitable for catalyst support in fuel cell and other application. The corrosion studies of these mesoporous TMN show CrN and NbN has higher chemical stability and longer range of electrochemical stability than other TMNs. Also, the electrochemical results show the systems of Pt or Pd nanoparticles on these high surface TMNs have better performance than commonly used Pt or Pd on carbon black systems. However, more homogeneous and better catalyst systems can be achieved by combining the advantages of stability and activity of different transition metals by using similar synthetic method.

英文关键词: Inorganic Nano-materials;Crystal Structure;Porous Materials;Materials Chemistry;Inorganic Synthesis

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员