In recent years deep learning methods have shown great superiority in compressed video quality enhancement tasks. Existing methods generally take the raw video as the ground truth and extract practical information from consecutive frames containing various artifacts. However, they do not fully exploit the valid information of compressed and raw videos to guide the quality enhancement for compressed videos. In this paper, we propose a unique Valid Information Guidance scheme (VIG) to enhance the quality of compressed videos by mining valid information from both compressed videos and raw videos. Specifically, we propose an efficient framework, Compressed Redundancy Filtering (CRF) network, to balance speed and enhancement. After removing the redundancy by filtering the information, CRF can use the valid information of the compressed video to reconstruct the texture. Furthermore, we propose a progressive Truth Guidance Distillation (TGD) strategy, which does not need to design additional teacher models and distillation loss functions. By only using the ground truth as input to guide the model to aggregate the correct spatio-temporal correspondence across the raw frames, TGD can significantly improve the enhancement effect without increasing the extra training cost. Extensive experiments show that our method achieves the state-of-the-art performance of compressed video quality enhancement in terms of accuracy and efficiency.
翻译:近些年来,深层学习方法在压缩视频质量提高任务中表现出了巨大的优势; 现有方法一般将原始视频作为地面真理,并从含有各种文物的连续框架中提取实用信息; 然而,它们并未充分利用压缩视频和原始视频的有效信息来指导压缩视频的质量提高; 在本文中,我们提议了一个独特的有效信息指导计划,通过开采压缩视频和原始视频的有效信息来提高压缩视频的质量; 具体地说,我们提议了一个高效的框架,即压缩的重复过滤网络,以平衡速度和增强。 通过过滤信息来消除冗余,通用报告格式可以使用压缩视频的有效信息来重建纹理。 此外,我们提议了一个进步的真相指导蒸馏战略,不需要设计额外的教师模式和蒸馏损失功能。 仅利用地面真理作为投入来指导模型,以汇总整个原始框架的正确空隙通信,TGD就可以在不增加额外培训费用的情况下大大改进强化效果。 广泛的实验显示,我们的方法实现了压缩质量提高的状态和压缩图像质量的精确性能。</s>