Graphs of bounded degeneracy are known to contain induced paths of order $\Omega(\log \log n)$ when they contain a path of order $n$, as proved by Ne\v{s}et\v{r}il and Ossona de Mendez (2012). In 2016 Esperet, Lemoine, and Maffray conjectured that this bound could be improved to $\Omega((\log n)^c)$ for some constant $c>0$ depending on the degeneracy. We disprove this conjecture by constructing, for arbitrarily large values of $n$, a graph that is 2-degenerate, has a path of order $n$, and where all induced paths have order $O((\log \log n)^2)$. We also show that the graphs we construct have linearly bounded coloring numbers.
翻译:具有有限小固定度数的图,如果其中存在一个大小为 $n$ 的路径,则已知其包含大小为 $\Omega(\log \log n)$ 的诱导路径,由 Ne\v{s}et\v{r}il 和 Ossona de Mendez (2012) 证明。2016 年,Esperet、Lemoine 和 Maffray 预测,这个界可被提升至 $\Omega((\log n)^c)$,对应的常数 $c>0$ 取决于固定度。我们通过构造图形来证明这个猜想的错误性 ,它对于任意大的 $n$,是一个2-固定的图,包含一个大小为 $n$ 的路径,且其中所有的诱导路径大小均为 $O((\log \log n)^2)$。
我们还表明,我们构造的图形具有线性有界的涂色数。