项目名称: 图的对称性与曲面嵌入
项目编号: No.10901015
项目类型: 青年科学基金项目
立项/批准年度: 2010
项目学科: 生物科学
项目作者: 周进鑫
作者单位: 北京交通大学
项目金额: 16万元
中文摘要: 图的对称性与图在曲面上的嵌入是代数图论和拓扑图论中的重要研究分支。该方面研究不仅与其它数学分支如群论、复分析、几何学等紧密相关,而且在信息科学、分子生物学、密码学及互联网络等科学领域中也有着广泛的应用,因而其研究有着重要的理论意义和实际应用价值。本项目将致力于以下方面的研究:1.利用有限群论、组合的方法及代数拓扑中的正则覆盖理论,在前人工作的基础上,进一步开展给定度数的高对称性图,如弧传递图、半弧传递图的分类工作。2.研究弧传递图在可定向闭曲面上的正则嵌入。图的正则嵌入也称为正则地图。拟利用有限群理论、商图理论及正则地图的代数表示理论研究给定群的正则凯莱地图以及给定图类的正则地图的分类,并研究它们的亏格和可反射性等重要性质。3.图在可定向闭曲面上的2-胞腔嵌入,亦称为地图。拟研究给定图类的地图和可反射地图的同构类的计数,并探索给定图类的地图同构类的亏格分布的一般方法。
中文关键词: 有限群;对称图;Cayley图;地图;网络可靠性
英文摘要:
英文关键词: finite group;symmetric graph;Cayley graph;map;reliability of networks