项目名称: 异质周期结构稀磁半导体量子输运性质研究

项目编号: No.11474124

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 张明喆

作者单位: 吉林大学

项目金额: 90万元

中文摘要: 稀磁半导体异质周期结构是一种量子有序态,自旋极化的电子-空穴对有效分离并周期排列,具有自旋相关的共振隧穿,通过外加电场, 磁场,光辐照可以操纵势垒和势阱,以及电子自旋和输运,是研究量子有序态和自旋相关的共振隧穿理想载体。本项目采用纳米磁组装方法,制备室温铁磁性p型和n型In2S3稀磁半导体纳米颗粒,并将其组装成多组分排列的准二维异质p-n结构阵列;结合晶体生长理论,表面界面动力学和统计热力学理论,系统研究微观机制;获得In2S3基p-n稀磁纳米异质结构阵列的可控和有序化制备技术。总结出可调控的量子有序态,探讨出稀磁纳米异质结构体系自旋相关的共振隧穿耦合与协同效应物理根源,发展相关理论,为制备新型量子态材料设计和应用提供重要的实验和理论依据。

中文关键词: 异质周期结构;自旋相关输运;稀磁半导体;纳米线阵列;磁电耦合效应

英文摘要: Heterogeneous periodic structure in diluted magnetic semiconductor is a quantum ordered state that spin-polarized electron - hole pairs are effectively isolated and periodically arranged, with spin-dependent resonant tunneling that barrier and potential well, and the electron spin and transport can be manipulated through applied electric field, magnetic field, light irradiation. Therefore, diluted magnetic semiconductor heterogeneous periodic structure is an ideal carrier for studying quantum ordered state and spin-dependent resonant tunneling. This project prepares room temperature ferromagnetism p-type and n-type In2S3 dilute magnetic semiconductor nanoparticles by using nano magnetic assembly method. And assembles them into a quasi-two-dimensional p-n heterojunction structure array arranged in a multi-component. The microscopic mechanism is studied systematically combined with the crystal growth theory, the interface surface dynamics and statistical thermodynamic theory. A controlled and orderly preparation technique of In2S3-based p-n diluted magnetic nano heterojunction structure array is expected to obtains. We look forward to summarize regulated quantum ordered state,explore the physical origin of spin-dependent resonant tunneling coupling and synergy effect in dilute magnetic nano heterostructure system, develops relevant theories and provide important experimental and theoretical basis for the design and application of new quantum state materials.

英文关键词: Heterogeneous periodic structure;Spin-dependent transport;Diluted magnetic semiconductor;Nanowire array;Magnetoelectric effect

成为VIP会员查看完整内容
0

相关内容

【2021新书】ApachePulsar 实战,402页pdf
专知会员服务
68+阅读 · 2021年12月29日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
50+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
【2021新书】ApachePulsar 实战,402页pdf
专知会员服务
68+阅读 · 2021年12月29日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
50+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员