Computationally solving multi-marginal optimal transport (MOT) with squared Euclidean costs for $N$ discrete probability measures has recently attracted considerable attention, in part because of the correspondence of its solutions with Wasserstein-$2$ barycenters, which have many applications in data science. In general, this problem is NP-hard, calling for practical approximative algorithms. While entropic regularization has been successfully applied to approximate Wasserstein barycenters, this loses the sparsity of the optimal solution, making it difficult to solve the MOT problem directly in practice because of the curse of dimensionality. Thus, for obtaining barycenters, one usually resorts to fixed-support restrictions to a grid, which is, however, prohibitive in higher ambient dimensions $d$. In this paper, after analyzing the relationship between MOT and barycenters, we present two algorithms to approximate the solution of MOT directly, requiring mainly just $N-1$ standard two-marginal OT computations. Thus, they are fast, memory-efficient and easy to implement and can be used with any sparse OT solver as a black box. Moreover, they produce sparse solutions and show promising numerical results. We analyze these algorithms theoretically, proving upper and lower bounds for the relative approximation error.
翻译:计算解决多边最佳运输(MOT)的成本,欧几里德平方计算出以美元为零的离散概率措施的成本,最近引起了相当的注意,部分原因是其解决方案与在数据科学方面有许多应用的瓦塞斯坦-两美元百利中心公司(Vasserstein-$2Bernicers)的对应。一般而言,这个问题是NP-硬的,要求采用实用的近似近似瓦塞斯坦巴里中心公司(MOT),而温和正规化则成功地适用于接近瓦塞斯坦巴里中心公司(Wasserstein Barycenter),这丧失了最佳解决方案的广度,使得难以直接在实践上解决MOT问题,因为有多元性的诅咒。因此,为了获得易行者,通常采用固定的支持限制电网,但高环境层面却令人望而望而望而望而望而望而望。在分析MOT和巴中心之间的关系后,我们提出了两种算法可以直接接近MOT的解决方案,主要需要$-1美元标准双基OT计算。因此,它们难以直接解决,因为其维度问题。因此,它们是快速、记忆和容易获得固定支持的网格分析,因此,我们可以用一个有把握地分析工具来显示任何有希望获得。