The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry.
翻译:二次曲线函数的梯度是非三角矢量场的显性模型。 例如, Brenier 的理论显示, 平方距离下欧几里德空间上任何两种测量方法之间的最佳运输图都作为二次曲线梯度实现, 这是最近基因流动模型中使用的关键洞察力。 在本文中, 我们研究如何通过整合由神经网络( 我们称之为输入convex 梯度网络) 生成的雅各布- 矢量产品参数来模拟二次曲线梯度。 我们从理论上研究导航卫星网络并将其与取用输入- Convex 神经网络(ICNN) 的梯度作比较, 实验性地表明, 单层导航卫星网络比单一层ICNN 更适合一个微小的例子。 最后, 我们探索从里曼的几何测量中更深的网络和构造连接的延伸。