The paper presents numerical experiments and some theoretical developments in prediction with expert advice (PEA). One experiment deals with predicting electricity consumption depending on temperature and uses real data. As the pattern of dependence can change with season and time of the day, the domain naturally admits PEA formulation with experts having different ``areas of expertise''. We consider the case where several competing methods produce online predictions in the form of probability distribution functions. The dissimilarity between a probability forecast and an outcome is measured by a loss function (scoring rule). A popular example of scoring rule for continuous outcomes is Continuous Ranked Probability Score (CRPS). In this paper the problem of combining probabilistic forecasts is considered in the PEA framework. We show that CRPS is a mixable loss function and then the time-independent upper bound for the regret of the Vovk aggregating algorithm using CRPS as a loss function can be obtained. Also, we incorporate a ``smooth'' version of the method of specialized experts in this scheme which allows us to combine the probabilistic predictions of the specialized experts with overlapping domains of their competence.


翻译:本文介绍了利用专家咨询意见进行预测的数值实验和一些理论发展(PEA)。一项实验涉及根据温度预测电力消耗,并使用实际数据。由于依赖模式可能随着季节和时间的变化而变化,因此这个领域自然地接受与具有不同“专门知识领域”的专家的PEA配方。我们考虑的情况是,一些相互竞争的方法以概率分布函数的形式产生在线预测。概率预测和结果之间的差别是通过损失函数(分数规则)衡量的。一个连续结果评分规则流行的例子是连续分级概率评分(CRPS)。在本文中,将概率预测结合起来的问题在PEA框架内得到考虑。我们表明,CRPS是一种可混合的损失函数,然后是利用CRPS作为损失函数对Vovk综合算法的遗憾进行时间依赖的上限。此外,我们纳入了这一办法中专门专家方法的“缩略图”版本,使我们能够将专家的概率预测与其能力重叠领域结合起来。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员