Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.
翻译:斯帕蒂奥时空预报在分析无线、交通和金融网络方面有许多应用。许多古典统计模型在处理时间序列数据中存在的复杂和高度非线性方面往往不尽如人意。最近深层次的学习进展使得可以更好地模拟空间和时间依赖性。虽然这些模型大多侧重于获得准确点预测,但它们没有描述预测的不确定性。在这项工作中,我们认为时间序列数据是从非线性状态空间模型中随机实现的,并且将隐蔽状态的贝叶西亚推断作为预测概率的准目标。我们使用粒子流作为接近国家远地点分布的工具,因为这表明在复杂、高维度环境中,粒子流非常有效。对几个真实世界时间序列数据集的索罗夫实验表明,我们的方法提供了对不确定性的更准确描述,同时保持了与最新点预测方法的类似准确性。