We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series similar to those in the early days of the COVID-19 pandemic. Developing improved forecast methods is essential as they provide data-driven decisions to organisations and decision-makers during critical phases. We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage. The final ensembles include a Prophet and long short term memory (LSTM) neural network as base models. The base models are combined by a multilayer perceptron (MLP), taking into account meta-features that indicate the highest correlation with each base model's forecast accuracy. We further show that the inclusion of meta-features generally improves the ensemble's forecast accuracy across two forecast horizons of seven and fourteen days. This research reinforces previous work and demonstrates the value of combining traditional statistical models with deep learning models to produce more accurate forecast models for time-series from different domains and seasonality.
翻译:我们调查在预测和研究其用于非季节性时间序列(类似于COVID-19大流行初期的预测和研究)方面的各种技术,研究其用于类似COVID-19大流行早期的非季节性时间序列的潜力。制定改进的预测方法至关重要,因为它们在关键阶段向组织和决策者提供由数据驱动的决定。我们提议使用一系列由两个预测模型组成的组合和两个元特征来利用晚期的数据聚合,以证明它们在初步预测阶段的预测能力。最后的集合包括一个先知和长期短期记忆(LSTM)神经网络,作为基础模型。基础模型由多层感应器(MLP)加以结合,同时考虑到表明与每个基本模型预测准确性之间最高相关性的元特性。我们进一步表明,在7天和14天的两个预测水平上,采用元特性通常会改善元的预测准确性。这一研究加强了以前的工作,并展示了将传统统计模型与深层次学习模型相结合的价值,以便为不同领域和季节性的时间序列提供更准确的预测模型。