We consider the problem of parameter estimation in slowly varying regression models with sparsity constraints. We formulate the problem as a mixed integer optimization problem and demonstrate that it can be reformulated exactly as a binary convex optimization problem through a novel exact relaxation. The relaxation utilizes a new equality on Moore-Penrose inverses that convexifies the non-convex objective function while coinciding with the original objective on all feasible binary points. This allows us to solve the problem significantly more efficiently and to provable optimality using a cutting plane-type algorithm. We develop a highly optimized implementation of such algorithm, which substantially improves upon the asymptotic computational complexity of a straightforward implementation. We further develop a heuristic method that is guaranteed to produce a feasible solution and, as we empirically illustrate, generates high quality warm-start solutions for the binary optimization problem. We show, on both synthetic and real-world datasets, that the resulting algorithm outperforms competing formulations in comparable times across a variety of metrics including out-of-sample predictive performance, support recovery accuracy, and false positive rate. The algorithm enables us to train models with 10,000s of parameters, is robust to noise, and able to effectively capture the underlying slowly changing support of the data generating process.


翻译:我们把问题作为一个混合整整优化问题来提出,并表明可以通过新颖的精确放松,将问题完全重塑为二进制曲线优化问题。放松在摩尔-彭罗斯反面上采用了一种新的平等,将非convex目标功能混为一流,同时与所有可行的二进制点的最初目标相吻合。这使我们能够大大高效地解决问题,并使用切割飞机型算法实现最优化。我们发展了高度优化的这种算法的实施,大大改进了直接执行的无精度计算复杂性。我们进一步开发了一种超常方法,保证产生可行的解决办法,并且如我们的经验所显示的那样,为二进制优化问题带来高质量的热源启动解决方案。我们在合成和现实世界的数据集上都显示,由此产生的算法在各种指标的可比时间里(包括超模量预测性性性能、支持回收准确性能和不实的精确性能支持率)中,能够以10000的稳健健度模型来有效测量数据。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
7+阅读 · 2021年5月13日
Deformable ConvNets v2: More Deformable, Better Results
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员