We investigate the benefits of feature selection, nonlinear modelling and online learning when forecasting in financial time series. We consider the sequential and continual learning sub-genres of online learning. The experiments we conduct show that there is a benefit to online transfer learning, beyond the sequential updating of recursive least-squares models. We show that feature representation transfer via radial basis function networks, which make use of clustering algorithms to construct a kernel Gram matrix, are more beneficial than treating each training vector as separate basis functions, as occurs with kernel Ridge regression. We also demonstrate quantitative procedures to determine the very structure of the networks. Finally, we conduct experiments on the log returns of financial time series and show that these online transfer learning models are able to outperform a random walk baseline, whereas the offline learning models struggle to do so.


翻译:我们在财务时间序列中进行预测时,调查地物选择、非线性建模和在线学习的好处。我们考虑在线学习的顺序和持续学习子类型。我们进行的实验表明,除了连续更新递增的最小方形模型之外,网上转移学习也有益处。我们显示,通过辐射基功能网络进行地物代表转换,利用群集算法来构建核心格拉姆矩阵,比将每个培训矢量作为单独的基础功能对待更为有益,就像内核脊脊回归那样。我们还展示了确定网络结构的量化程序。最后,我们进行了财务时间序列日志回报实验,并表明这些在线转移学习模型能够超越随机行走基线,而离线学习模型则努力这样做。

0
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
专知会员服务
117+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月21日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年12月30日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2022年1月21日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年12月30日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员