Automatically generating textual descriptions for massive unlabeled images on the web can greatly benefit realistic web applications, e.g. multimodal retrieval and recommendation. However, existing models suffer from the problem of generating ``over-generic'' descriptions, such as their tendency to generate repetitive sentences with common concepts for different images. These generic descriptions fail to provide sufficient textual semantics for ever-changing web images. Inspired by the recent success of Vision-Language Pre-training (VLP) models that learn diverse image-text concept alignment during pretraining, we explore leveraging their cross-modal pre-trained knowledge to automatically enrich the textual semantics of image descriptions. With no need for additional human annotations, we propose a plug-and-play framework, i.e CapEnrich, to complement the generic image descriptions with more semantic details. Specifically, we first propose an automatic data-building strategy to get desired training sentences, based on which we then adopt prompting strategies, i.e. learnable and template prompts, to incentivize VLP models to generate more textual details. For learnable templates, we fix the whole VLP model and only tune the prompt vectors, which leads to two advantages: 1) the pre-training knowledge of VLP models can be reserved as much as possible to describe diverse visual concepts; 2) only lightweight trainable parameters are required, so it is friendly to low data resources. Extensive experiments show that our method significantly improves the descriptiveness and diversity of generated sentences for web images. The code is available at https://github.com/yaolinli/CapEnrich.
翻译:在网络上自动生成大规模未贴标签图像的文本描述,可以极大地有益于现实的网络应用程序,例如多式联运检索和建议。然而,现有模型存在生成“超通用”描述的问题,例如它们倾向于生成具有不同图像共同概念的重复句子。这些通用描述未能为不断变化的网络图像提供足够的文本语义。受最近成功开发的Vision-Language预培训(VLP)模型的启发,这些模型在培训前学习不同的图像文本概念协调,我们探索如何利用其跨模式的预培训前知识自动丰富图像描述的文字语义。在不需要额外的人文说明的情况下,我们建议一个插接和播放框架,用更多的语义细节来补充通用图像描述。具体地说,我们首先提出一个自动数据构建策略,以获得所需的培训句子,然后我们采取提示性战略,即:可学习性和模板,然后将VLPl培训模型仅仅用于生成更多的文本细节细节细节。我们提议了一个插图的插件模板,这样就可以将VL-L-L-realalalalalalalalalalalalalalational exal ex ex exalalaldealdeal ex exdedustrational ex lautes,我们就可以使用两个可快速的模型,我们可以将快速地将快速的模型定位到可能使用。