We study the mixing properties of an important optimization algorithm of machine learning: the stochastic gradient Langevin dynamics (SGLD) with a fixed step size. The data stream is not assumed to be independent hence the SGLD is not a Markov chain, merely a \emph{Markov chain in a random environment}, which complicates the mathematical treatment considerably. We derive a strong law of large numbers and a functional central limit theorem for SGLD.
翻译:我们研究机器学习的重要优化算法的混合特性:固定步数的随机梯度梯度Langevin动态(SGLD)(SGLD),数据流不被认为是独立的,因此SGLD不是Markov链条,而只是随机环境中的\emph{Markov链条,这在很大程度上使数学处理变得复杂。我们为SGLD得出了数量众多的强力法则和功能中心限制理论。