We consider structured optimisation problems defined in terms of the sum of a smooth and convex function, and a proper, l.s.c., convex (typically non-smooth) one in reflexive variable exponent Lebesgue spaces $L_{p(\cdot)}(\Omega)$. Due to their intrinsic space-variant properties, such spaces can be naturally used as solution space and combined with space-variant functionals for the solution of ill-posed inverse problems. For this purpose, we propose and analyse two instances (primal and dual) of proximal gradient algorithms in $L_{p(\cdot)}(\Omega)$, where the proximal step, rather than depending on the natural (non-separable) $L_{p(\cdot)}(\Omega)$ norm, is defined in terms of its modular function, which, thanks to its separability, allows for the efficient computation of algorithmic iterates. Convergence in function values is proved for both algorithms, with convergence rates depending on problem/space smoothness. To show the effectiveness of the proposed modelling, some numerical tests highlighting the flexibility of the space $L_{p(\cdot)}(\Omega)$ are shown for exemplar deconvolution and mixed noise removal problems. Finally, a numerical verification on the convergence speed and computational costs of both algorithms in comparison with analogous ones defined in standard $L_{p}(\Omega)$ spaces is presented.
翻译:我们考虑结构优化问题, 以平滑和 convex 函数的总和以及适当的 l.s.c. 、 comvex( 通常非mooth) 和反动变量Expentent Lebesgue 空间$L ⁇ p(\cdot)} (\Omega) 来定义结构优化问题。 由于这些空间的内在空间差异性能, 可以自然地用作解决方案空间空间, 并与空间变量功能相结合, 以解决错误的反向问题。 为此, 我们提出并分析两个例子( 纯和双向), 在 $L ⁇ p(\cdot) 中, 准加速的梯度梯度算算法( 纯和双向) (cdvergate), 其中 proximaltial 步骤, 而不是取决于自然( 不可分离的) $L ⁇ ( cotto) 标准, 其模块功能的定义是, 因为它的可有效计算 。