We propose a method for channel training and precoding in FDD massive MIMO based on deep neural networks (DNNs), exploiting Downlink (DL) channel covariance knowledge. The DNN is optimized to maximize the DL multi-user sum-rate, by producing a pre-beamforming matrix based on user channel covariances that maps the original channel vectors to effective channels. Measurements of these effective channels are received at the users via common pilot transmission and sent back to the base station (BS) through analog feedback without further processing. The BS estimates the effective channels from received feedback and constructs a linear precoder by concatenating the optimized pre-beamforming matrix with a zero-forcing precoder over the effective channels. We show that the proposed method yields significantly higher sum-rates than the state-of-the-art DNN-based channel training and precoding scheme, especially in scenarios with small pilot and feedback size relative to the channel coherence block length. Unlike many works in the literature, our proposition does not involve deployment of a DNN at the user side, which typically comes at a high computational cost and parameter-transmission overhead on the system, and is therefore considerably more practical.


翻译:我们提出了一种基于深度神经网络(DNN)的FDD Massive MIMO中信道训练和预编码的方法,利用下行(DL)信道协方差知识。通过基于用户信道协方差产生预波束形成矩阵的DNN进行优化,其通过将原始信道向量映射到有效信道来实现,以便最大化DL多用户总速率。通过公共导频传输将这些有效通道的测量值发送至用户,然后通过模拟反馈无进一步处理地将其发送回基站(BS)。BS从接收的反馈估计有效信道,并通过将优化的预波束形成矩阵与零强制预编码器在有效信道上串联来构建线性预编码器。我们表明,与最先进的DNN-based信道训练和预编码方案相比,所提出的方法在小导频和反馈大小相对于信道相干块长度的情况下,特别是在场景中获得更高的总速率。与文献中许多工作不同的是,我们的提案不涉及在用户端部署DNN,这通常会在系统上带来高计算成本和参数传输开销,因此更加实用。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年12月18日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员