Game-playing proofs constitute a powerful framework for non-quantum cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandry's compressed quantum oracles~(Crypto'19) can be used to do quantum lazy sampling of a class of non-uniform function distributions. Second, we observe how Unruh's one-way-to-hiding lemma~(Eurocrypt'14) can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function.


翻译:游戏游戏证据构成非量子加密安全参数的强大框架, 最显著的是在无区别的情况下应用的。 这种证据中的一个基本要素是随机原始物的懒惰抽样。 我们通过概括两种最近开发的验证技术来开发量子游戏验证框架。 首先, 我们描述Zhandry的压缩量子或电容器~( Crypto' 19) 如何用来对非单形函数分布的类别进行量子懒惰抽样。 其次, 我们观察Unruh的单向顺带 Lemmma~ (Eurocrypt' 14) 如何也可以适用于压缩神器, 提供游戏基本精髓的量子对应物。 随后, 我们用我们的游戏框架来证明海绵构造的量性不相容, 假设一个随机的内部函数 。

0
下载
关闭预览

相关内容

模型优化基础,Sayak Paul,67页ppt
专知会员服务
77+阅读 · 2020年6月8日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月13日
Arxiv
0+阅读 · 2021年4月12日
VIP会员
相关VIP内容
模型优化基础,Sayak Paul,67页ppt
专知会员服务
77+阅读 · 2020年6月8日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年4月13日
Arxiv
0+阅读 · 2021年4月12日
Top
微信扫码咨询专知VIP会员