We study here the conditions to perform the distribution of a pure state on a quantum network using quantum operations which can succeed with a non-zero probability, the Stochastic Local Operation and Classical Communication (SLOCC) operations. In their pioneering 2010 work, Kobayashi et al. showed how to convert any classical network coding protocol into a quantum network coding protocol. However, they left open whether the existence of a quantum network coding protocol implied the existence of a classical one. Motivated by this question, we characterize the set of distribution tasks achievable with non zero probability for both classical and quantum networks. We develop a formalism which encompasses both types of distribution protocols by reducing the solving of a distribution task to the factorization of a tensor with complex coefficients or real positive ones. Using this formalism, we examine the equivalences and differences between both types of distribution protocols exhibiting several elementary and fundamental relations between them as well as concrete examples of both convergence and divergence. We answer by the negative to the issue previously left open: some tasks are achievable in the quantum setting, but not in the classical one. We believe this formalism to be a useful tool for studying the extent of quantum network ability to perform multipartite distribution tasks.


翻译:我们在这里研究利用量子网络上能够以非零概率成功实现的量子网络分配纯状态的条件,即Stochastic地方操作和经典通信(SLOCC)操作。在2010年的开创性工作中,Kobayashi等人展示了如何将任何古典网络编码协议转换成量子网络编码协议的条件。然而,他们对于量子网络编码协议的存在是否意味着存在一种古典协议持开放态度。受这一问题的驱使,我们确定了一套在非零概率情况下对古典网络和量子网络都可实现的分配任务。我们形成了一种形式主义,它包括两种类型的分配协议,即将分配任务解决到具有复杂系数或实际正值的成因化。我们利用这种形式主义,检查显示其若干基本和基本关系的两种分配协议之间的等同性和差异,以及表明它们之间趋同性和差异的具体例子。我们从否定的角度回答以前遗留的问题:有些任务在量子网络设置中是可以实现的,但不能在典型的网络中实现。我们认为这种形式主义是一种有用的工具,用于研究量子网络的分布能力的程度。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
9+阅读 · 2020年2月15日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员