We propose an empirical Bayes method to estimate high-dimensional covariance matrices. Our procedure centers on vectorizing the covariance matrix and treating matrix estimation as a vector estimation problem. Drawing from the compound decision theory literature, we introduce a new class of decision rules that generalizes several existing procedures. We then use a nonparametric empirical Bayes g-modeling approach to estimate the oracle optimal rule in that class. This allows us to let the data itself determine how best to shrink the estimator, rather than shrinking in a pre-determined direction such as toward a diagonal matrix. Simulation results and a gene expression network analysis shows that our approach can outperform a number of state-of-the-art proposals in a wide range of settings, sometimes substantially.
翻译:我们提出一种经验性贝叶斯方法来估计高维共变矩阵。 我们的程序中心是将共变量矩阵进行传导,并将矩阵估计作为矢量估计问题处理。 根据复合决定理论文献, 我们引入了一种新的决定规则, 概括了现有的几种程序。 然后我们用非参数性的经验贝叶斯模型方法来估计该类中最优规则。 这让我们可以让数据本身决定如何最好地缩小估计值, 而不是缩小一个预先确定的方向, 如向对等矩阵。 模拟结果和基因表达网络分析表明, 我们的方法可以在广泛的环境中, 有时大大超越一些最先进的建议。