Recent applications in machine learning have renewed the interest of the community in min-max optimization problems. While gradient-based optimization methods are widely used to solve such problems, there are however many scenarios where these techniques are not well-suited, or even not applicable when the gradient is not accessible. We investigate the use of direct-search methods that belong to a class of derivative-free techniques that only access the objective function through an oracle. In this work, we design a novel algorithm in the context of min-max saddle point games where one sequentially updates the min and the max player. We prove convergence of this algorithm under mild assumptions, where the objective of the max-player satisfies the Polyak-\L{}ojasiewicz (PL) condition, while the min-player is characterized by a nonconvex objective. Our method only assumes dynamically adjusted accurate estimates of the oracle with a fixed probability. To the best of our knowledge, our analysis is the first one to address the convergence of a direct-search method for min-max objectives in a stochastic setting.
翻译:机器学习中的最近应用使社区对微量最大优化问题重新产生了兴趣。 虽然基于梯度的优化方法被广泛用于解决这些问题, 但有许多情况下, 这些技术并不合适, 或当梯度无法获取时甚至不适用。 我们调查了属于一类衍生物无衍生物技术的直接搜索方法的使用, 这些技术仅通过一个神器访问目标函数。 在这项工作中, 我们设计了一个小麦峰顶点游戏的新型算法, 在那里, 一个人可以按顺序更新微量和最大玩家。 我们证明这种方法在轻度假设下是趋同的, 最大玩家的目标是满足Polyak- L ⁇ ojasiewicz (PL) 条件, 而小玩家的特征是非康克斯目标。 我们的方法只是以固定的概率动态调整过对角的精确估计。 我们最了解的是, 我们的分析是第一个解决微量计算环境中微量目标的直接研究方法的趋同。