We consider online computation of expectations of additive state functionals under general path probability measures proportional to products of unnormalised transition densities. These transition densities are assumed to be intractable but possible to estimate, with or without bias. Using pseudo-marginalisation techniques we are able to extend the particle-based, rapid incremental smoother (PaRIS) algorithm proposed in [J.Olsson and J.Westerborn. Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm. Bernoulli, 23(3):1951--1996, 2017] to this setting. The resulting algorithm, which has a linear complexity in the number of particles and constant memory requirements, applies to a wide range of challenging path-space Monte Carlo problems, including smoothing in partially observed diffusion processes and models with intractable likelihood. The algorithm is furnished with several theoretical results, including a central limit theorem, establishing its convergence and numerical stability. Moreover, under strong mixing assumptions we establish a novel $O(n \varepsilon)$ bound on the asymptotic bias of the algorithm, where $n$ is the path length and $\varepsilon$ controls the bias of the density estimators.
翻译:我们考虑在一般路径概率尺度下对添加状态功能的预期值进行在线计算。 这些过渡密度假定是棘手的,但有可能估计,无论是否偏差。 使用假边缘化技术,我们能够扩展[J.Olsson和J.Westerborn]中提议的基于粒子的快速增量平稳(PARIS)算法。 在一般隐藏的Markov模型中,高效的基于粒子的在线平稳:PARIS算法。 Bernoulli, 23(3):1951-1996年, 2017年] 与这一环境相称。 由此产生的算法在粒子数量和恒定记忆要求方面具有线性复杂性,适用于一系列具有挑战性的路径空间-蒙特卡洛问题,包括在部分观测到的传播过程和模型中平滑和,而且可能性难以克服。 该算法包含若干理论结果,包括中央定律,建立其趋同和数字稳定性。 此外,在强有力的混合假设下,我们建立了一个新型的美元(nqarepsilon)美元(n vareepsilon),绑定在算法的偏差上。