A $k$-submodular function is a function that given $k$ disjoint subsets outputs a value that is submodular in every orthant. In this paper, we provide a new framework for $k$-submodular maximization problems, by relaxing the optimization to the continuous space with the multilinear extension of $k$-submodular functions and a variant of pipage rounding that recovers the discrete solution. The multilinear extension introduces new techniques to analyze and optimize $k$-submodular functions. When the function is monotone, we propose almost $\frac{1}{2}$-approximation algorithms for unconstrained maximization and maximization under total size and knapsack constraints. For unconstrained monotone and non-monotone maximization, we propose an algorithm that is almost as good as any combinatorial algorithm based on Iwata, Tanigawa, and Yoshida's meta-framework ($\frac{k}{2k-1}$-approximation for the monotone case and $\frac{k^2+1}{2k^2+1}$-approximation for the non-monotone case).
翻译:$k$ submodular 函数是一个函数, 它给 $k$ 分解子项输出值提供一种值, 在每个星体中都是子模式 。 在本文中, 我们为 $k$ 的子模式最大化问题提供了一个新框架 。 通过将 $k$ 子模式函数的多线性扩展和 一个可回收离散解决方案的圆形的变种, 将优化优化到连续空间 。 多线性扩展引入了分析和优化 $k$ 子模式函数的新技术 。 当函数为单调时, 我们提议了 $\ frac{ 1\% 2} $ 的匹配算法, 用于在总尺寸和 knapsack 限制下实现不受限制的最大化和最大化。 对于未受限制的单调单调单调单调和不调的单调单调单调单调单调和无色最大化, 我们提议的算法几乎和基于 Iwata、 Tanigawa 和 Yoshida 的元框架算法 (\ k2) +1 pprog- acrog- ac) 。