A key result in the theory of the modal mu-calculus is the disjunctive normal form theorem by Janin & Walukiewicz, stating that every mu-calculus formula is semantically equivalent to a so-called disjunctive formula. These disjunctive formulas have good computational properties and play a pivotal role in the theory of the modal mu-calculus. It is therefore an interesting question what the best normalisation procedure is for rewriting a formula into an equivalent disjunctive formula of minimal size. The best constructions that are known from the literature are automata-theoretic in nature and consist of a guarded transformation, i.e., the constructing of an equivalent guarded alternating automaton from a mu-calculus formula, followed by a Simulation Theorem stating that any such alternating automaton can be transformed into an equivalent non-deterministic one. Both of these transformations are exponential constructions, making the best normalisation procedure doubly exponential. Our key contribution presented here shows that the two parts of the normalisation procedure can be integrated, leading to a procedure that is single-exponential in the closure size of the formula.


翻译:模块模量计算模型理论的一个关键结果就是Janin & Walukieewicz 的分解正态常态理论, 指出每个 mus- calculus 公式都是与所谓的分解公式等同的音义。 这些分解公式具有良好的计算特性, 在模块mucalcalulus 理论中发挥着关键作用。 因此,这是一个有趣的问题。 将公式改写成同等的最小尺寸的分解公式的最佳正常化程序是什么。 文献中已知的最佳结构是性质上的自动成像理论, 由一种保守的变形组成, 即从一个混合计算公式中建造一个等量的、 相互保护的交替自动数学, 之后是模拟理论, 指出任何这种交替的自动数学都可转换成一个等同的非分解式的公式。 这些变形都是指数性构造, 使最佳的正常化程序加倍化。 我们在这里介绍的主要贡献显示, 正常化程序的两个部分可以整合, 导致单一的公式的关闭程序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
深度学习线性代数简明教程
论智
11+阅读 · 2018年5月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月7日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
深度学习线性代数简明教程
论智
11+阅读 · 2018年5月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员