Let $A \in \mathbb{Z}^{m \times n}$ be an integral matrix and $a$, $b$, $c \in \mathbb{Z}$ satisfy $a \geq b \geq c \geq 0$. The question is to recognize whether $A$ is $\{a,b,c\}$-modular, i.e., whether the set of $n \times n$ subdeterminants of $A$ in absolute value is $\{a,b,c\}$. We will succeed in solving this problem in polynomial time unless $A$ possesses a duplicative relation, that is, $A$ has nonzero $n \times n$ subdeterminants $k_1$ and $k_2$ satisfying $2 \cdot |k_1| = |k_2|$. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a polynomial time algorithm to solve integer programs in standard form over $\{a,b,c\}$-modular constraint matrices for any constants $a$, $b$ and $c$.


翻译:问题在于确认美元是否为$a, b, c $-modual, 即绝对值为$n n un minutes 的一套美元绝对值为$a, b, c 美元, c 美元 美元。我们将在多元时间成功地解决这个问题,除非美元具有重复关系,即美元具有非零 美元 美元 = 美元 = geq b, c = geq c = geq = 0 美元。 问题在于确认美元是否为$a, b, c = 美元 美元 = 美元 = $k_ 美元 = = k_ 2 美元。这是我们分析的结果,我们为任何完全单一的矩阵提供了一种众所周知的识别算法, 美元 美元 = 美元 美元 = 美元 = 美元 = 美元 = = 美元 = 美元 = 2 = = = 美元 = = 美元 = = = 美元 = = = = 任何标准的矩阵 美元 = 美元 = =xxxxxxxxxxxxxxxx y y y = = 美元 = 美元 = 美元 = = = = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
将门创投
7+阅读 · 2018年10月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
将门创投
7+阅读 · 2018年10月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员