Given a matrix $A$ and $k\geq 0$, we study the problem of finding the $k\times k$ submatrix of $A$ with the maximum determinant in absolute value. This problem is motivated by the question of computing the determinant-based lower bound of [LSV86] on hereditary discrepancy, which was later shown to be an approximate upper bound as well [Mat13]. The special case where $k$ coincides with one of the dimensions of $A$ has been extensively studied. [Nik15] gave a $2^{O(k)}$-approximation algorithm for this special case, matching known lower bounds; he also raised as an open problem the question of designing approximation algorithms for the general case. We make progress towards answering this question by giving the first efficient approximation algorithm for general $k\times k$ subdeterminant maximization with an approximation ratio that depends only on $k$. Our algorithm finds a $k^{O(k)}$-approximate solution by performing a simple local search. Our main technical contribution, enabling the analysis of the approximation ratio, is an extension of Pl\"ucker relations for the Grassmannian, which may be of independent interest; Pl\"ucker relations are quadratic polynomial equations involving the set of $k\times k$ subdeterminants of a $k\times n$ matrix. We find an extension of these relations to $k\times k$ subdeterminants of general $m\times n$ matrices.


翻译:以 $A 和 $k\ geq 0 的 矩阵,我们研究了如何找到 $k\ lax $k- approntics 和 $A 和 $k\ geq 0 的 亚矩阵。 这个问题的起因是计算[LSV86] 有关遗传差异的基于决定因素的较低约束的问题, 后又显示其大约是上限和 [Mat13] 。 特例是, 美元与美元的一个维度相吻合。 [Nik15] 为这个特殊案例提供了 $(k) 和已知的较低界限的 $(k) 准度计算法。 他还作为一个公开的问题提出了为一般案例设计近似算法的问题。 我们在回答这个问题上取得了进展, 给出了通用 $k\ timek\ kdeminticle kk_ kknknational sublations, 我们的算法通过简单的本地搜索找到一个 $ (k) $(k) $nk)\ kde kde mexmus comm comm sual subilational lase.

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员