Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods. And relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.
翻译:互操作性问题是建立信息建模(BIM)中的一个重大问题。 对象类型是多个BIM应用程序(如扫描到BIM和代码合规检查)所需的一种关键语义信息,在交换BIM数据或利用其它域软件创建模型时也会受到影响。 可以通过深层次学习加以补充。 目前深层学习方法主要从BIM对象的形状信息中学习,用于分类,而BIM环境所固有的关联信息则没有被使用。 为解决这一问题,我们引入了双层的几何关系深层学习框架。它用关系信息强化了以前的几何分类方法。 我们还展示了BIM对象数据集 IFCNet++, 其中载有关于对象的几何和关联信息。实验表明,我们的框架可以灵活地适应不同的几何方法。 关系特征对一般几何学习方法起到奖励作用,显然改善了它们的分类性能,从而减少了检查模型的手工劳动,提高了丰富BIM模型的实际价值。