Paper recommendation with user-generated keyword is to suggest papers that simultaneously meet user's interests and are relevant to the input keyword. This is a recommendation task with two queries, a.k.a. user ID and keyword. However, existing methods focus on recommendation according to one query, a.k.a. user ID, and are not applicable to solving this problem. In this paper, we propose a novel click-through rate (CTR) prediction model with heterogeneous graph neural network, called AMinerGNN, to recommend papers with two queries. Specifically, AMinerGNN constructs a heterogeneous graph to project user, paper, and keyword into the same embedding space by graph representation learning. To process two queries, a novel query attentive fusion layer is designed to recognize their importances dynamically and then fuse them as one query to build a unified and end-to-end recommender system. Experimental results on our proposed dataset and online A/B tests prove the superiority of AMinerGNN.
翻译:带有用户生成关键字的纸张建议是建议同时满足用户兴趣并与输入关键字相关的文件。 这是一个建议任务, 包含两个查询, a. k. a. 用户 ID 和 关键字。 但是, 现有方法侧重于根据一个查询, a. k. a. 用户 ID 的建议, 并不适用于解决这一问题 。 在本文中, 我们建议使用一个带有多式图形神经网络的新型点击率预测模型, 名为 AminerGNN, 以建议包含两个查询的文件 。 具体来说, AminerGNNN 为项目用户、 纸张和 关键字在相同的嵌入空间中构建一个变量图形学习 。 要处理两个查询, 一个新的查询注意聚合层旨在动态地识别它们的重要性, 然后将它们结合成一个查询, 以构建一个统一的端对端建议系统 。 我们提议的数据集的实验结果和在线 A/ B 测试证明了 AminGNN 的优越性 。