Domain generalization person re-identification (DG Re-ID) aims to directly deploy a model trained on the source domain to the unseen target domain with good generalization, which is a challenging problem and has practical value in a real-world deployment. In the existing DG Re-ID methods, invariant operations are effective in extracting domain generalization features, and Instance Normalization (IN) or Batch Normalization (BN) is used to alleviate the bias to unseen domains. Due to domain-specific information being used to capture discriminability of the individual source domain, the generalized ability for unseen domains is unsatisfactory. To address this problem, an Attention-aware Multi-operation Strategery (AMS) for DG Re-ID is proposed to extract more generalized features. We investigate invariant operations and construct a multi-operation module based on IN and group whitening (GW) to extract domain-invariant feature representations. Furthermore, we analyze different domain-invariant characteristics, and apply spatial attention to the IN operation and channel attention to the GW operation to enhance the domain-invariant features. The proposed AMS module can be used as a plug-and-play module to incorporate into existing network architectures. Extensive experimental results show that AMS can effectively enhance the model's generalization ability to unseen domains and significantly improves the recognition performance in DG Re-ID on three protocols with ten datasets.


翻译:在现有的DG Re-ID方法中,变式操作有效地提取了域域通用特征,而例态常态(IN)或批次正常化(BN)用于缩小对隐形域的偏向。此外,我们分析不同域异变性特征,将空间注意力运用到INW操作中,将注意力引导到GW操作中,以加强域性可变性特征。拟议的AMS多功能战略(AMS)模块可以有效地用于扩大现有数据元化的模型。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
13+阅读 · 2021年3月29日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员