Deep learning models achieve outstanding accuracy in semantic segmentation, however they require a huge amount of labeled data for their optimization. Hence, domain adaptation approaches have come into play to transfer knowledge acquired on a label-abundant source domain to a related label-scarce target domain. However, such models do not generalize well to data with statistical properties not perfectly matching the ones of the training samples. In this work, we design and carefully analyze multiple latent space-shaping regularization strategies that work in conjunction to reduce the domain discrepancy in semantic segmentation. In particular, we devise a feature clustering strategy to increase domain alignment, a feature perpendicularity constraint to space apart feature belonging to different semantic classes, including those not present in the current batch, and a feature norm alignment strategy to separate active and inactive channels. Additionally, we propose a novel performance metric to capture the relative efficacy of an adaptation strategy compared to supervised training. We verify the effectiveness of our framework in synthetic-to-real and real-to-real adaptation scenarios, outperforming previous state-of-the-art methods on multiple road scenes benchmarks and using different backbones.


翻译:深层学习模型在语义分隔方面达到极佳的准确度,然而,它们需要大量贴标签的数据才能优化。因此,域适应方法已经发挥作用,把在标签丰度源域获得的知识转移到相关的标签蚀刻目标域;然而,这些模型并不完全适用于与培训样本不完全匹配的统计属性数据。在这项工作中,我们设计并仔细分析多种潜在的空间成形正规化战略,这些战略有助于减少语义分隔的域差异。特别是,我们设计了一种特征组合战略,以加强域对不同语义分类(包括目前批次中未出现的分类)的地貌分离特征的特性的多重性制约,以及一项特性规范调整战略,将活跃和非活跃的渠道分开。此外,我们提出了一个新的性能衡量标准,以掌握适应战略相对于监督培训的相对效力。我们核查了我们的框架在合成到现实和真实的适应情景中的有效性,在多条路面基准上表现优于以往的状态方法,并使用了不同的主干线。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员