Flow-guide synthesis provides a common framework for frame interpolation, where optical flow is typically estimated by a pyramid network, and then leveraged to guide a synthesis network to generate intermediate frames between input frames. In this paper, we present UPR-Net, a novel Unified Pyramid Recurrent Network for frame interpolation. Cast in a flexible pyramid framework, UPR-Net exploits lightweight recurrent modules for both bi-directional flow estimation and intermediate frame synthesis. At each pyramid level, it leverages estimated bi-directional flow to generate forward-warped representations for frame synthesis; across pyramid levels, it enables iterative refinement for both optical flow and intermediate frame. In particular, we show that our iterative synthesis can significantly improve the robustness of frame interpolation on large motion cases. Despite being extremely lightweight (1.7M parameters), UPR-Net achieves excellent performance on a large range of benchmarks. Code will be available soon.
翻译:流动指导合成为框架内插提供了一个共同的框架框架,光学流动通常由一个金字塔网络进行估算,然后被用来指导合成网络,在输入框架之间生成中间框架。本文介绍全环网络,这是一个全新的统一金字塔经常网络,用于框架内插。在灵活的金字塔框架内,全环网络为双向流量估计和中间框架合成开发了轻量的经常性模块。在每个金字塔层面,它利用估计的双向流动生成出前置图示用于框架合成;在金字塔层面,它使得光学流动和中间框架的迭接式完善成为可能。特别是,我们表明我们的迭代合成可以大大改善大动态案例框架内插的稳健性。尽管具有极轻的(1.7M参数),但全新网络在大量基准上取得了极佳的绩效。代码将很快提供。