We present the implementation of nonlinear control algorithms based on linear and quadratic approximations of the objective from a functional viewpoint. We present a gradient descent, a Gauss-Newton method, a Newton method, differential dynamic programming approaches with linear quadratic or quadratic approximations, various line-search strategies, and regularized variants of these algorithms. We derive the computational complexities of all algorithms in a differentiable programming framework and present sufficient optimality conditions. We compare the algorithms on several benchmarks, such as autonomous car racing using a bicycle model of a car. The algorithms are coded in a differentiable programming language in a publicly available package.
翻译:我们从功能角度介绍非线性控制算法的实施情况,这些算法基于目标的线性近似值和二次近似值。我们展示了一种梯度下降法、高斯-牛顿法、牛顿法、带有线性二次或二次近似值的不同动态编程方法、各种线性搜索战略和这些算法的正规化变体。我们从一个不同的编程框架中得出所有算法的计算复杂性,并展示出充分的最佳性条件。我们比较了几个基准的算法,例如使用汽车自行车模型的自主汽车赛车。这些算法用一种不同的编程语言编码成一个公共可用的套件。