We design, analyze, and implement a new conservative Discontinuous Galerkin (DG) method for the simulation of solitary wave solutions to the generalized Korteweg-de Vries (KdV) Equation. The key feature of our method is the conservation, at the numerical level, of the mass, energy and Hamiltonian that are conserved by exact solutions of all KdV equations. To our knowledge, this is the first DG method that conserves all these three quantities, a property critical for the accurate long-time evolution of solitary waves. To achieve the desired conservation properties, our novel idea is to introduce two stabilization parameters in the numerical fluxes as new unknowns which then allow us to enforce the conservation of energy and Hamiltonian in the formulation of the numerical scheme. We prove the conservation properties of the scheme which are corroborated by numerical tests. This idea of achieving conservation properties by implicitly defining penalization parameters, that are traditionally specified a priori, can serve as a framework for designing physics-preserving numerical methods for other types of problems.
翻译:我们设计、分析和实施一种新的保守的、不连续的Galerkin(DG)方法,模拟通用的Korteweg-de Vries(KdV)等式的单波溶液。我们的方法的关键特征是在数字层面保护由所有KdV方程式的精确溶液所保护的质量、能源和汉密尔顿人。据我们所知,这是保存所有这三个数量的第一个DG方法,这是对单波的准确长期演变至关重要的财产。为了实现预期的保护特性,我们的新想法是在数字通量中引入两个稳定参数,作为新的未知因素,从而使我们能够在数字图案的制定中强制保护能源和汉密尔顿人。我们证明这个办法的保存特性得到了数字试验的证实。通过隐性地界定传统上规定的惩罚性参数来实现保护特性,可以作为为其它类型的问题设计物理保留数字方法的框架。