Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of $\mathcal{O}(1/T)$, under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to $\mathcal{O}(1/\sqrt{T})$. These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.
翻译:在优化两个相互冲突的函数时,将考虑双目标优化的托盘交替算法,对于这两个函数,必须分别对每个函数分别适用优化步骤。这种算法包括在每个迭代中对每个单个目标应用一定数量的梯度或亚梯度下降步骤。在本文中,我们显示,托盘交替算法达到一个亚线性趋同率$\mathcal{O}(1/T)$($_BAR__BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR____BAR___BAR_BAR_BAR_BAR_BAR_BAR_