Consider a Urysohn integral equation $x - \mathcal{K} (x) = f$, where $f$ and the integral operator $\mathcal{K}$ with kernel of the type of Green's function are given. In the computation of approximate solutions of the given integral equation by Galerkin method, all the integrals are needed to be evaluated by some numerical integration formula. This gives rise to the discrete version of the Galerkin method. For $r \geq 1$, a space of piecewise polynomials of degree $\leq r-1$ with respect to a uniform partition is chosen to be the approximating space. For the appropriate choice of a numerical integration formula, an asymptotic series expansion of the discrete iterated Galerkin solution is obtained at the above partition points. Richardson extrapolation is used to improve the order of convergence. Using this method we can restore the rate of convergence when the error is measured in the continuous case. A numerical example is given to illustrate this theory.
翻译:考虑 Urysohn 整体方程式 $x - \ mathcal{K} (x) = f$, 其中给出美元, 以及带有绿色函数类型内核的完整操作器$\ mathcal{K} $。 在计算 Galerkin 方法给定整体方程式的近似解决方案时, 需要用某种数字集成公式来评估所有整体方程式。 这产生了 Galerkin 方法的离散版本。 对于 $r\ geq 1 美元, 选择一个与统一分区有关的单位多级多级方位数 $\leq r-1 空间作为相近的空间。 对于数字集成公式的适当选择, 在上述分隔点上获取离散迭热加列金解决方案的自动序列扩展。 Richardson 外推法用于改善趋同的顺序。 使用这个方法, 当连续案件中测量错误时, 我们可以恢复趋同率。 给出一个数字例子来说明这个理论 。